22 research outputs found

    Interstitial diagnosis and treatment of breast tumours

    Get PDF
    This thesis exploits the interaction of light with breast tissue for diagnosis and therapy. Optical biopsy is an experimental technique, based on Elastic Scattering Spectroscopy (ESS), being developed for characterising breast tissue. An optical probe interrogates tissue with a white light pulse, with spectral analysis of the reflected light. 264 spectral measurements (50 patients) were obtained from a range of breast tissues and axillary lymph nodes and correlated with conventional histology of biopsies from the same sites. Algorithms for spectral analysis were developed using ANN (Artificial Neural Network), HCA (Hierarchical Cluster Analysis) and MBA (Model Based Analysis). The sensitivity and specificity for cancer detection in breast and lymph nodes were: [diagram]. Interstitial Laser Photocoagulation (ILP) involves image guided, thermal coagulation of lesions within the breast using laser energy delivered via optical fibres positioned percutaneously under local anaesthetic. Two groups were studied: 1) Nineteen patients with benign fibroadenomas underwent ILP and the results compared with 11 treated conservatively. Thirteen ILP patients (14 fibroadenomas) and 6 controls (11 fibroadenomas) have reached their one-year review: [diagram]. These differences are statistically significant (P<0.001). 2)Six patients with primary breast cancers underwent ILP (with pre- and post-ILP contrast enhanced MRI) within 3 weeks of diagnosis and were then treated with Tamoxifen. Four underwent surgery at 3 months, two showing complete tumour ablation. MRI was reasonably accurate at detecting residual tumour. In conclusion: a) optical biopsy is a promising 'real time' diagnostic tool for breast disease. b) ILP could provide a simple and safe alternative to surgery for fibroadenomas. c) ILP with MRI monitoring may be an alternative to surgery in the management of some patients with localised primary breast cance

    Adjunctive rifampicin for Staphylococcus aureus bacteraemia (ARREST): a multicentre, randomised, double-blind, placebo-controlled trial.

    Get PDF
    BACKGROUND: Staphylococcus aureus bacteraemia is a common cause of severe community-acquired and hospital-acquired infection worldwide. We tested the hypothesis that adjunctive rifampicin would reduce bacteriologically confirmed treatment failure or disease recurrence, or death, by enhancing early S aureus killing, sterilising infected foci and blood faster, and reducing risks of dissemination and metastatic infection. METHODS: In this multicentre, randomised, double-blind, placebo-controlled trial, adults (≥18 years) with S aureus bacteraemia who had received ≤96 h of active antibiotic therapy were recruited from 29 UK hospitals. Patients were randomly assigned (1:1) via a computer-generated sequential randomisation list to receive 2 weeks of adjunctive rifampicin (600 mg or 900 mg per day according to weight, oral or intravenous) versus identical placebo, together with standard antibiotic therapy. Randomisation was stratified by centre. Patients, investigators, and those caring for the patients were masked to group allocation. The primary outcome was time to bacteriologically confirmed treatment failure or disease recurrence, or death (all-cause), from randomisation to 12 weeks, adjudicated by an independent review committee masked to the treatment. Analysis was intention to treat. This trial was registered, number ISRCTN37666216, and is closed to new participants. FINDINGS: Between Dec 10, 2012, and Oct 25, 2016, 758 eligible participants were randomly assigned: 370 to rifampicin and 388 to placebo. 485 (64%) participants had community-acquired S aureus infections, and 132 (17%) had nosocomial S aureus infections. 47 (6%) had meticillin-resistant infections. 301 (40%) participants had an initial deep infection focus. Standard antibiotics were given for 29 (IQR 18-45) days; 619 (82%) participants received flucloxacillin. By week 12, 62 (17%) of participants who received rifampicin versus 71 (18%) who received placebo experienced treatment failure or disease recurrence, or died (absolute risk difference -1·4%, 95% CI -7·0 to 4·3; hazard ratio 0·96, 0·68-1·35, p=0·81). From randomisation to 12 weeks, no evidence of differences in serious (p=0·17) or grade 3-4 (p=0·36) adverse events were observed; however, 63 (17%) participants in the rifampicin group versus 39 (10%) in the placebo group had antibiotic or trial drug-modifying adverse events (p=0·004), and 24 (6%) versus six (2%) had drug interactions (p=0·0005). INTERPRETATION: Adjunctive rifampicin provided no overall benefit over standard antibiotic therapy in adults with S aureus bacteraemia. FUNDING: UK National Institute for Health Research Health Technology Assessment

    Oral versus intravenous antibiotics for bone and joint infection

    Get PDF
    BACKGROUND The management of complex orthopedic infections usually includes a prolonged course of intravenous antibiotic agents. We investigated whether oral antibiotic therapy is noninferior to intravenous antibiotic therapy for this indication. METHODS We enrolled adults who were being treated for bone or joint infection at 26 U.K. centers. Within 7 days after surgery (or, if the infection was being managed without surgery, within 7 days after the start of antibiotic treatment), participants were randomly assigned to receive either intravenous or oral antibiotics to complete the first 6 weeks of therapy. Follow-on oral antibiotics were permitted in both groups. The primary end point was definitive treatment failure within 1 year after randomization. In the analysis of the risk of the primary end point, the noninferiority margin was 7.5 percentage points. RESULTS Among the 1054 participants (527 in each group), end-point data were available for 1015 (96.3%). Treatment failure occurred in 74 of 506 participants (14.6%) in the intravenous group and 67 of 509 participants (13.2%) in the oral group. Missing end-point data (39 participants, 3.7%) were imputed. The intention-to-treat analysis showed a difference in the risk of definitive treatment failure (oral group vs. intravenous group) of −1.4 percentage points (90% confidence interval [CI], −4.9 to 2.2; 95% CI, −5.6 to 2.9), indicating noninferiority. Complete-case, per-protocol, and sensitivity analyses supported this result. The between-group difference in the incidence of serious adverse events was not significant (146 of 527 participants [27.7%] in the intravenous group and 138 of 527 [26.2%] in the oral group; P=0.58). Catheter complications, analyzed as a secondary end point, were more common in the intravenous group (9.4% vs. 1.0%). CONCLUSIONS Oral antibiotic therapy was noninferior to intravenous antibiotic therapy when used during the first 6 weeks for complex orthopedic infection, as assessed by treatment failure at 1 year. (Funded by the National Institute for Health Research; OVIVA Current Controlled Trials number, ISRCTN91566927. opens in new tab.

    Models of classroom assessment for course-based research experiences

    Get PDF
    Course-based research pedagogy involves positioning students as contributors to authentic research projects as part of an engaging educational experience that promotes their learning and persistence in science. To develop a model for assessing and grading students engaged in this type of learning experience, the assessment aims and practices of a community of experienced course-based research instructors were collected and analyzed. This approach defines four aims of course-based research assessment—(1) Assessing Laboratory Work and Scientific Thinking; (2) Evaluating Mastery of Concepts, Quantitative Thinking and Skills; (3) Appraising Forms of Scientific Communication; and (4) Metacognition of Learning—along with a set of practices for each aim. These aims and practices of assessment were then integrated with previously developed models of course-based research instruction to reveal an assessment program in which instructors provide extensive feedback to support productive student engagement in research while grading those aspects of research that are necessary for the student to succeed. Assessment conducted in this way delicately balances the need to facilitate students’ ongoing research with the requirement of a final grade without undercutting the important aims of a CRE education

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p&lt;0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p&lt;0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p&lt;0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP &gt;5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Development of an Australia and New Zealand Lung Cancer Clinical Quality Registry: a protocol paper

    No full text
    Introduction: Lung cancer is the leading cause of cancer mortality, comprising the largest national cancer disease burden in Australia and New Zealand. Regional reports identify substantial evidence-practice gaps, unwarranted variation from best practice, and variation in processes and outcomes of care between treating centres. The Australia and New Zealand Lung Cancer Registry (ANZLCR) will be developed as a Clinical Quality Registry to monitor the safety, quality and effectiveness of lung cancer care in Australia and New Zealand. Methods and analysis: Patient participants will include all adults >18 years of age with a new diagnosis of non-small-cell lung cancer (NSCLC), SCLC, thymoma or mesothelioma. The ANZLCR will register confirmed diagnoses using opt-out consent. Data will address key patient, disease, management processes and outcomes reported as clinical quality indicators. Electronic data collection facilitated by local data collectors and local, state and federal data linkage will enhance completeness and accuracy. Data will be stored and maintained in a secure web-based data platform overseen by registry management. Central governance with binational representation from consumers, patients and carers, governance, administration, health department, health policy bodies, university research and healthcare workers will provide project oversight. Ethics and dissemination: The ANZLCR has received national ethics approval under the National Mutual Acceptance scheme. Data will be routinely reported to participating sites describing performance against measures of agreed best practice and nationally to stakeholders including federal, state and territory departments of health. Local, regional and (bi)national benchmarks, augmented with online dashboard indicator reporting will enable local targeting of quality improvement efforts.</p

    The Oxford Royal College of General Practitioners clinical informatics digital hub: Protocol to develop extended COVID-19 surveillance and trial platforms

    No full text
    Background: Routinely recorded primary care data have been used for many years by sentinel networks for surveillance. More recently, real world data have been used for a wider range of research projects with the anticipation they could be used to support rapid, lower cost clinical trials. Much larger numbers of general practices are required to deliver effective surveillance and in-pandemic trials, given the partial national lockdown has resulted in falling community disease incidence. Objective: To describe the rapid design and development of the Oxford Royal College of General Practitioners Clinical Informatics Digital (ORCHID) Hub, and its first two platforms. The Surveillance Platform will provide extended primary care surveillance, while the Trials Platform will be a streamlined clinical trials platform integrated into routine primary care practice. Methods: We will apply the FAIR (Findable, Accessible, Interoperable and Reusable) metadata principles to a new, unique, integrated digital health hub, combining routinely collected electronic health date from UK general practice. The hub will be findable through membership of Health Data Research UK and European metadata repositories. Accessibility through an online application system will allow study-ready datasets to be accessed or custom datasets developed. Interoperability will be facilitated by fixed linkage to other key sources such as Hospital Episodes Statistics and the Office of National Statistics using pseudonymised data. All semantic descriptors (i.e. ontologies) and code used for analysis will be made shareable, to accelerate analyses. We will also make data available using common data models starting with the FDA Sentinel and OMOP approaches to facilitate international studies. The Surveillance Platform will provide access to data for health protection and promotion work as authorised through agreements between Oxford, the Royal College of General Practitioners and by Public Health England. All studies using the Trials Platform will have gone through appropriate ethical and other regulatory approval. Results: The hub will be a bottom-up, professionally led network ensuring benefits for member practices, our health service and the population served. Data will only be used for SQuIRE (surveillance, quality improvement, research and education) purposes. There has already been a positive response from practices and the number in the network has doubled since February to over 1,150. COVID-19 Surveillance has delivered a trebling of virology sites to 293 (target 300), helping collect the largest ever weekly total of surveillance swabs in the UK as well as over 3,000 SARS-CoV-2 serology samples. Practices are recruiting to the PRINCIPLE trial and follow-up of these participants will take place through ORCHID. These initial outputs demonstrate the feasibility of ORCHID to provide an extended national, digital health hub. Conclusions: ORCHID will deliver equitable and innovative use of big data, through a professionally-led national primary care network and the application of FAIR principles. The unique and secure data hub will host routinely collected general practice data linked to other key healthcare repositories. ORCHID will support rapid data extraction, analysis and dissemination with the aim of improving future research and development in general practice to positively impact upon patient care
    corecore